Talk:Oscilloscope

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Praise[edit]

Wow! Great article! Though what's the reference material you guys used? I'd like to submit this to WP:FAC. - Ta bu shi da yu 00:39, 20 Dec 2004 (UTC)

Thanks for your kind words! For the small contributions that I made (primarily having to do with analog storage), I wrote from my own knowledge. My early education came from an excellent series of technical books that Tektronix wrote describing the design of various oscilloscope subsystems, and after that, years of experience using and maintaining (primarily Tek) oscilloscopes.

Atlant 01:12, 20 Dec 2004 (UTC)

You definitely should submit it. I'd been thinking about doing the same thing myself, until I realized I'd better check the talk page first. Dinferno 12:35, 28 May 2007 (UTC)[reply]

Aquadag[edit]

The electrons, after hitting the screen, must come back to the anode so that the circuit is closed. Otherwise, the negative charge accumulated no the screen will repel the electron beam, preventing it from reaching the screen. The return path of the electrons is provdied by coating the sidewalls of the CRT with carbon particles, referred to as aquadag and by connecting this coating to the accelerating anode. --Krishnavedala 10:57, May 15, 2005 (UTC)

Well, that and the aluminized screen. ;-)
Atlant 17:05, 15 May 2005 (UTC)[reply]

Aquadag is (or was) a tradename owned by Acheson Colloids (Corp?) for water-suspended colloidal graphite. Acheson made (and probably still makes) a variety of c.g. products, including Oildag and Alcoholdag. Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

Cheap 'scopes?[edit]

Does anyone have any suggestions as to where a poor hobbyist such as myself might be able to buy an oscilloscope for relatively cheap?

The standard answer used to be Heathkit (or for some, Eico kits), but that option is gone now. :-( That leaves you with the used market, and you can get pretty good 'scopes at reasonable prices if you look hard enough. For example, companies going out of business may sell off their test equipment; that's where my '465B comes from. Another one of my scopes is an older HP military-surplus job that came, believe it or don't, for free from an annual public auction that my town holds to get rid of surplus equipment (from the schools, etc.). Nobody else wanted it so I got it for nothing at the end of the auction.
And, of course, it depends on what you mean by "relatively cheap"; a '2465 still costs a big chunk of change. And at this point, while you can probably get an old vacuum tube cheap, I'd imagine it would pretty hard to keep it up-and-running if you use it often.
Atlant 23:32, 17 October 2005 (UTC)[reply]
Well I would suggest Ebay nowadays. Or if you are near to any amateur (ham) radio rallies/auctions, these seem to be places where things go for a song esp if you know what youre looking at/for and maybe can do some minor repairs.--Light current 23:41, 21 April 2006 (UTC).[reply]
You can download a free PC oscilloscope for Windows here.--Max 10:03, 23 June 2006 (UTC)[reply]
There is another free PC one here --Trounce 14:13, 4 November 2006 (UTC)[reply]
Most real work needs more bandwidth than a sound card can deliver, though.
Atlant 11:33, 23 June 2006 (UTC)[reply]

Washing your oscilloscope[edit]

This is not as crazy as it first appears. As long as the components dont suffer from water or mild detergent damage, this is a good way of removing dust and unremoved flux, nicotine(!) etc that can compromise the circuit boards surface high resistance and crap build up on switches. After washing, its important to let the boards dry out thoroughly, and I recommend placing them near the output of a dehumidifier for about 24 hrs before putting them back and applying volts. I have done this procedure on the plug in boards from a TV set and the set worked perfectly afterwards!--Light current 22:09, 21 April 2006 (UTC)[reply]

How do you wash it? Manually in a sink? dishwasher? — Omegatron 23:25, 21 April 2006 (UTC)[reply]

No, no of course not a dishwasher. Be serious! You take out all the little pcbs, run them under warm water with some washup detergent using a soft bristled brush to clean away all the muck. If you're sure all parts will stand it, you could use Isopropyl alcohol initially to get rid of greasy/oily/flux/nicotine deposits. Then you rinse thoroughly in clean warm/cold water and let them drip dry before putting them near the dehumidifier for 24 hrs. --Light current 23:33, 21 April 2006 (UTC)[reply]

I didnt remove part of your comment intentionally (could have been a mistake)- I thought you had! I must have done ctrlX insted of ctrlC Sorry about that!--Light current 20:52, 22 April 2006 (UTC)[reply]

Oh, ok. Running PCBs through a dishwasher is pretty common to remove flux, etc. — Omegatron 20:58, 22 April 2006 (UTC)[reply]

Id not heard that one. What solvent do you use to get rid of flux? Maybe a dishwasher is good- but I dont know enough about them to be sure--Light current 21:00, 22 April 2006 (UTC)[reply]

You use water-soluble flux, of course!  :-) — Omegatron 18:12, 31 July 2006 (UTC)[reply]

Tektronix, in tube (valve) days, told how to wash their 'scopes. It was water and detergent, followed by a distilled-water rinse, then drying at perhaps 160 F. Apparently, the power transformer could be immersed, at least in distilled water. IIrc, they said that the CRT should be removed before washing. Nikevich (talk) 00:11, 1 February 2009 (UTC)[reply]

(I posted the above before I discovered that user Atlant is a Tek guy. He really knows!) Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

Alternatives[edit]

rm from page:

Alternatives to the oscilloscope[edit]

There is an affordable alternative to an oscilloscope that is useful for many tasks, and perhaps superior for radio repair, and that is to listen to the signals.

The basic plan is to mix (multiply) an intermediate frequency with the signal, and then amplify and listen to the result through a speaker. In other words, you are using amplitude modulation to shift the signal down into the audio band. (For audio frequency signals no modulation is necessary, of course.)

With modern solid-state circuits, such equipment is cheap and can run from a small battery. This diagnostic system was widely used for almost all early radio development, and is still used in Asia, and by impoverished amateur radio operators. In the Soviet Union, the standard radio diagnostic tester combined a multimeter with an oscillator, frequency mixer and audio amplifier that could perform this task.

Or to put it the other way around: An single scope replaces a network analyzer, frequency mixer, delay generator, gated integrator, frequency counter, boxcar avarager

This matl is nothing to do with oscilloscopes but testing methods in general.--Light current 07:27, 28 April 2006 (UTC)[reply]

Tek scope caption[edit]

This really is too long Atlant. It unbalances the page and the photo. 8-( Maybe most of this info could go in the body of the article?--Light current 04:52, 31 July 2006 (UTC)[reply]

It probably should go in whatever section is describing the various function blocks, maybe with some circles and arrows Photoshopped in. If need be, I could certainly shoot some photos of other oscilloscopes (although the odds are they'd be Tek :-), 'cause that's what most of the 'scopes I have access to are! ).
Atlant 13:01, 31 July 2006 (UTC)[reply]

Are you suggesting close ups of the various functional areas on the front panel with a small caption describing each one? If so, I think thats a good idea 8-) It doesnt matter that they'll all be Teks. They're probably the best examples to use anyway and my favorite! --Light current 15:25, 31 July 2006 (UTC)[reply]

Or a single image with circled areas and call-out lines leading to captions such as "Vertical controls" and "Time base controls", etc.
Atlant 15:54, 31 July 2006 (UTC)[reply]

If you like although that sounds like a lot more work to me! And I wouldnt know how to do it 8-|--Light current 16:37, 31 July 2006 (UTC)[reply]

I agree that graphics of many different types of controls and explanation of what each does would be great. — Omegatron 18:13, 31 July 2006 (UTC)[reply]

Would graphics be better than close up photos of real scopes? 8-|--Light current 18:26, 31 July 2006 (UTC)[reply]

Speaking just for myself, I'd prefer the concrete example of the front panel of a real 'scope, suitably disected and labeled. I'll try to cook something up.
Atlant 19:15, 31 July 2006 (UTC)[reply]
Agree that real scopes are better. — Omegatron 19:38, 31 July 2006 (UTC)[reply]
I've now got a fairly-good photo of a current Tek DPO7254 (2.5GHz Digital Phosphor Oscilloscope) that I'm trying to ready for the article. It would probably mae a better subject for an "expanded" photo, allowing us to have a smaller photo as part of the article's lede. But if the DPO photo doesn't work out, I'll pose and shoot my good-old 465.
Atlant 15:58, 21 August 2006 (UTC)[reply]

I have temproarily restored the pic to the large size pending new photos.--Light current 16:01, 21 August 2006 (UTC)[reply]

I have made what I hope is a compromise. You can have your huge picture, but not at the top of the article where it squeezes out the text, and where the reader won't understand the caption because the terms haven't been explained yet. The huge picture with the huge caption belongs lower down, where it can be explained in depth. I'm sorry about the two copies of the same photo, but that can easily be fixed. --Heron 20:46, 21 August 2006 (UTC)[reply]

Sorry Heron it was not I who placed the picture thus!--Light current 00:01, 22 August 2006 (UTC)[reply]

Bandwidth record[edit]

The article currently contains the following text:

The current bandwidth record, as of February 2005, is held by the Tektronix TDS6000C oscilloscope family with a digitally enhanced bandwidth of up to 15 GHz and costing about US$150,000.

But Tektronix currently sells a 'scope (the TDS8200 family) which has a sampling bandwidth ranging up to 70 GHz (and it's possible other vendors may go faster; I haven't looked). So shouldn't this sentence be modified to state something like "real time bandwidth" or "non-sampling bandwidth"? (FYI: That TDS6154 manages 40 GS/s across two channels!) And as of 2006, is this Tek still the fastest?

Atlant 22:46, 31 July 2006 (UTC)[reply]

Scope picture[edit]

C'mon 'O', how many people know how to select the proper thumb size?--Light current 23:59, 21 August 2006 (UTC)[reply]

I don't see any need to have a separate article for dual beam oscilloscope, and as the existing article dual beam oscilloscope is quite short, it would make good sense to implement the proposed merge. DFH 19:18, 26 September 2006 (UTC)[reply]

Agree merge--Light current 10:48, 21 November 2006 (UTC)[reply]
Thanks for agreement. Merge now done. DFH 19:22, 21 November 2006 (UTC)[reply]

Curve tracers[edit]

I had intended to create an article about curve tracers, but as yet, I have been too busy. If anyone else would like to take up this task, I would be only too pleased. DFH 19:41, 21 November 2006 (UTC)[reply]

I've substantially expanded an existing article. See Semiconductor curve tracer. Feel free to take it farther; it certainly needs the addition of a modern-day picture (which I'll shoot if I get a chance, but feel free to beat me to it).
Atlant 00:54, 28 November 2006 (UTC)[reply]
Why are curve tracers so damn expensive cf ordinary scopes?--Light current 00:59, 28 November 2006 (UTC)[reply]
Curve tracers are substantially more complex (consisting of an oscilloscope plus a bunch of high-capability, automated power supplies and miscellaneous measuring gear) and they have a much more limited marketplace, limiting the potential volumes and the resulting economies of scale. There's probably also an element of "what the market will bear". I was looking at our Sony/Tektronix curve tracer the other day and noticed it had a CRT with a custom "internal graticule" and I wondered what that custom CRT alone must have cost Tek.
Atlant 01:10, 28 November 2006 (UTC)[reply]
Well Atlant Im sure you or I could quite easily design ramping voltage and current sources as a small add on for a normal scope. In fact Im sure Ive seen home brew projects published to do it. After that you only needa low BW scope. So I tend to go with your latter reasons instead of the former!

BTW are you sure about this piece of the article?>

The main terminal voltage can often be swept up to several thousand volts with load currents of tens of amps available at lower voltages.

8-)--Light current 01:15, 28 November 2006 (UTC)[reply]

I'm sure about the "several thousands of volts"; that same Tek/Sony curve tracer can do 2,000 volts! I'll verify the current claim.
Ahh. here we are: 10 amps on the particular model I was thinking about.[1]
Atlant 02:04, 28 November 2006 (UTC)[reply]
OK. Its just that I dont remember the old Tek 575 tracer going very high in volts or current. But its been a long time since Ive seen one! If you look at the photo on the page, youll see that the volts/div goes upto 20, giving about 200v max, and the current per div goes up to 1000mA/div ginig 10 A max. But perhaps theres a multiplier that is brought in somewhere?--Light current 02:07, 28 November 2006 (UTC)[reply]
And if you really want to cook, howzabout 400 Amps pulsed power and 3KV? [2]
Atlant 02:12, 28 November 2006 (UTC)[reply]
Yeah certainly looks like a cooker. Good for cooking eggs & ham!--Light current 02:14, 28 November 2006 (UTC)[reply]

I really should have explained that I was talking about the S/H market really. Tracers like the 575 are very expensive for what5 they are I feel. Anyway Im not likely to need to use one, so no problem.--Light current 02:18, 28 November 2006 (UTC)[reply]

The 400A and 3kV are not simultaneously applied. These are different ranges. DFH 18:58, 28 November 2006 (UTC)[reply]

This ap note might aid the MSO segment of the entry[edit]

This Agilent Technologies ap note might be a useful addition to the Mixed-Signal-Oscilloscope section. It contains a vendor-neutral description of what an MSO is, and describes how an MSO can be used to debug an 8-bit microcontroller with I2C bus.

1bigdork 22:28, 27 November 2006 (UTC)[reply]

faster than the speed of light????[edit]

"By the late 1970s, with transistor components rather than vacuum tubes, Tektronix was selling oscilloscopes on which the signal trace traveled across the screen faster than the speed of light."

I mean, Tektronix built great stuff, but defying the laws of physics? I am not editing because I think this might be a malformation, so wanted to ask first...--Cerejota 16:00, 4 December 2006 (UTC)[reply]

It's a true claim. It's also a sort of inside joke. When the electron beam sweeps across the screen, there's no physical object that's actually (physically) moving very fast. The electrons are the only thing that's physically moving, travelling at their relatively-leisurely velocity from cathode to screen, with each impinging electron producing a little flash of light. And, of course, the beam is sweeping, with the trajectory of the electrons being varied with time.
It's only that trajectory that, at the screen, moves faster than light. And it's not a physical entity, so it's not constrained by the Speed of Light.
Think of a water hose and nozzle. As you sweep it from side to side, the place that gets wet can move very fast, much faster than the water droplets themselves are moving. It's the same thing here. Or, if you like, think of you aiming a laser pointer at an astronomical screen a few thousand kilometres away; the spot you create on that screen can move much faster than the speed of light.
Your average 'scope screen is 10 cm (0.1 M) across in the X dimension. Light travels at 300,000,000,000 metres per second so about 3.3 ns per metre so about 33 ps per cm. If the aggregate effect of the horizontal sweep and the vertical deflection is moving the illuminated spot on the screen faster than that, the spot is "moving" faster than light. And the fastest calibrated sweep speed of the Tek 7104 'scope was 200 ps/cm, so with some vertical deflection added in...
Atlant 16:15, 4 December 2006 (UTC)[reply]
  1. No sir ! The laser beam would bend. The coherent light of a laser beam isn't low velocity water droplets. If one sweeps the beam towards a "screen a few thousand kilometres away" the laser beam cannot accelerate beyond the speed of light, it will just take more time to reach the "screen".58.166.39.216 05:25, 8 March 2007 (UTC)[reply]
actually, you're both right - the laser beam would from the side appear to bend, but that's not the point. the light in the beam isn't moving faster than light, obviously, but the dot at the end *is*. 202.76.179.8 (talk) 14:35, 2 June 2010 (UTC)[reply]
The previous IP is correct. This is a well known phenomenon. Doesn't even need a laser beam, a flashlight beam would do. This is not a violation because you still can't use this to send information faster than C: Change the rate at which the beam source is pivoted, and the changes don't show up at distance d until d/C has passed. Jeh (talk) 20:22, 2 June 2010 (UTC)[reply]

Another example of 'faster than the speed of light' occurs in waveguides, the conduits used to conduct microwaves in radar systems. Very difficult to describe the behavior of microwaves in words, but imagine waves in a body of water (Lake Michigan) striking the shore at an acute angle. The waves are moving toward the shore at 10 mph, but the point at which each wave meets the shore is moving along the shore much faster. Microwaves move across rather than along the waveguide, at an acute angle, and the point at which they meet the sides of the waveguide (at near C) is "moving" along the length of the waveguide at >C because of the angle. As the instructors at Keesler AFB used to say (ca 1958) "Get it? Got it. Good!" Anewcharliega (talk) 19:32, 1 August 2013 (UTC)[reply]

advanced features of oscilloscope[edit]

hi if somebody could help me out on this .... this is my library research project... my email id is: mohit AT rome DOT com.ill be highly obliged. thank you

well, I'm afraid the very object of school research work is to get you to do the research work... CyrilB 21:57, 19 February 2007 (UTC)[reply]

Links to circuits[edit]

I think there are not enough links to circuits used in the scope. Delays, ramps, variable amplifiers, samplers, triggers. Or do I just miss them, I think I have seen ADC at least? Arnero 13:51, 13 March 2007 (UTC)[reply]

Some circuits found in 'scopes were called "pulse circuits" some time ago. Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

makers[edit]

I guess their are not too many old timers arround.

(I'm one; will be 73 at the end of 2009.02 Been a 'scope nut almost all my life. Nikevich (talk) 17:26, 1 February 2009 (UTC))[reply]

I started trying to find makers and noted that many of the test equiment firms Don't have a Wikipedia presence. Other brands that come to mind is B&K Dynascan, (and the B&K Televison anayist should be decribed also :) (Perhaps as part of Flying spot scanner )) PACO, Hicock, .... cmacd 14:39, 5 June 2007 (UTC)[reply]

Before Tektronix, DuMont (Allen B. DuMont Labs.) was the top manufacturer in the USA. (Google on [Allen B. DuMont]; naturally, the first reference is to Wikipedia.) It was Hickok, btw. Nikevich (talk) 00:20, 1 February 2009 (UTC)[reply]

Digital scope inventor?[edit]

This article claims:

"The first Digital Storage Oscilloscopes (DSO) was invented by Walter LeCroy (who founded the LeCroy Corporation, based in New York,"

However - the earliest references to a Lecroy Digital Oscillscope seem to be 1985. See: https://www.fundinguniverse.com/company-histories/LeCroy-Corporation-Company-History.html http://www.hmi.de/events/SEI/archiv/2003-03/vortrag/wiegard_lecroy.pdf

The earliest complete combination analog/digital oscillscope was the 1980A/B. It is detailed in the Sept. 1982 issue of the Hewlett Packard Journal. http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1982-09.pdf

It seems incorrect to claim the Walter LeCroy invented the digital oscilloscope.

192.25.240.225 00:11, 13 September 2007 (UTC)MikeB[reply]

I concur that this is incorrect. Hiro Moriyasu of Tektronix should be credited with this invention.

The same paragraph credits LeCroy with having the highest-bandwidth digital scope. This is misleading, because this refers to a sampling scope. Sampling scopes lack the triggering, single-shot, and real-time signal viewing required by most engineers to be a true DSO. In the real-time scope world, Tektronix holds the nominal bandwidth title at 20 GHz, but this claim is disputed by both LeCroy and Agilent because they cannot verify that a 20GHZ sine wave is attenuated less than 3dB. The LeCroy and Tektronix scopes probably have comparable max BW @ 18GHz. Note: I do not work for either of these companies. -- 1bigdork —Preceding unsigned comment added by 1bigdork (talkcontribs) 03:33, 17 January 2008 (UTC)[reply]

True or false information in this edit?[edit]

I found this edit from an IP today, "Lissajous figures are an example of how an oscilloscope can be used to track phase differences between multiple input signals." is that edit really incorrect?, or is it just misstaken for a vandalism? Please motivate why false/true. —Preceding unsigned comment added by Electron9 (talkcontribs) 21:39, 14 November 2007 (UTC)[reply]

This was the existing text. The anon IP swapped it from some different text; I replaced it. It is correct. Oli Filth(talk) 22:21, 14 November 2007 (UTC)[reply]

Yes - lissajous do measure the phase between two signals. The scope should be in XY mode, and the signals should be of the exact same frequency (normally originating from the same source). If the phase difference is zero, the two signals are identical and x=y, which is the equation of a line, which is exactly what is displayed on the scope. If phase difference in 90 deg, a circle is formed, and if phase difference is 180 degrees, x = -y and a line of negative slope is displayed. See Lissajous[3]. 71.214.54.167 (talk) 02:46, 15 December 2007 (UTC)MikeB[reply]

Oscillograph - copying cites from offsite PD copy of PD text?[edit]

I've found some off-site references to the early 1875-1915 Joubert and Duddell oscillographs, which interestingly are from public domain sources like the 1911 Encylopedia Brittanica. However, I have no idea how copyright rules apply to a website which has itself just duplicated public domain information. Can I freely copy text and references from these off-site articles? I do not know.

Two websites with the same public domain text:

I will try to find some info on the licensing questions. DMahalko (talk) 14:47, 5 July 2008 (UTC)[reply]


Delay lines[edit]

There does not seem to be any mention of the all important delay line in the article. Maybe someone should add it--79.76.203.9 (talk) 15:28, 14 August 2008 (UTC)[reply]

Do you mean the adjustable trigger delay found on dual-beam oscilloscopes? How important it is depends on what kind of waveform one is examining, but it is mentioned in the article. Cuddlyable3 (talk) 18:33, 4 September 2008 (UTC)[reply]

I've added a description/commentary about the analog delay line in better CRT 'scopes, why it's there, and how its constructed. Alos added text describing delayed sweeps. Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

FFT feature[edit]

Some oscilloscopes have additional analysis tools built in. These may include a Fast Fourier Transform (FFT) feature, which displays the frequency spectrum of the input waveform. It is worth adding this to the Other features section? And does anyone know if there is a simple discussion it could link to, on the characteristics of the FFT spectrum, such as bandwidth, resolution, magnitude and phase? -- Cheers, Steelpillow (Talk) 07:48, 4 September 2008 (UTC)[reply]

I'd like to know, too! I had that in mind, but left it perhaps a tad too generic. Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

Moved Comment From Article[edit]

This was in the article, I moved it here. "Note: There is an error in the picture below. The picture notesas an AM signal is not an AM signal. The peaks and valleys should be at the same time on the top and bottom of the carrier."

It's the sum of two sinusoids, one with a frequency much higher than the other. It is definitely not AM. I rewrote the caption. AM would be the product of the two; the lower border would be a mirror image of the upper. Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

I have no idea whether it's valid or not Terrx (talk) 23:41, 23 September 2008 (UTC)[reply]

Reorganization of article[edit]

Should the history section be at the top after the introduction? That seems to be the default format of most articles, to provide the history of the subject in question before actually going in to describe the details and nuances. Kortaggio (talk) 22:00, 26 October 2008 (UTC)[reply]

I like that, because I'm a history-of-technology nut, but am not so sure others would like it. Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

Parked here till I can move the non-redundant parts to Oscilloscope[edit]

The beam can be moved much more rapidly, and it is easier to make the beam deflection accurately proportional to the applied signal, by using electrostatic deflection as described above instead of magnetic deflection. Magnetic deflection is achieved by passing currents through coils external to the tube; it allows the construction of much shorter tubes for a given screen size. Electrostatic deflection, however, can only swing the beam over a relatively narrow angle, making the CRT quite long for a given screen size. Circuit arrangements are required in magnetic deflection to approximately linearize the beam position as a function of signal current, and the very wide deflection angles require arrangements to keep the beam focused (dynamic focusing).

Some oscilloscope CRTs have geometry-correcting electrodes is their electron guns, as well as deflection plates with contoured front (screen) edges for geometry correction.

Typical oscilloscopes have an input, often referred to as the z-axis, for modulating the beam intensity (brightness). This requires only minimal circuitry.

In principle either type of deflection can be used for any purpose; but electrostatic deflection is best for oscilloscopes with relatively small screens and high performance requirements, while a television receiver with a large screen and electrostatic deflection would be many meters deep. Moreover, electrostatic deflection can operate up to 1 GHz, while the inductance of magnetic-deflection coils limits their practical upper frequency to less than 1 MHz, if even that. Fewer turns of wire means a lower inductance, but also a higher current for a given amount of deflection, so deflection amplifiers for fast magnetic deflection become impractical.

Hewlett-Packard developed a large-screen electrostatic-deflection X-Y display, with a Z-axis (intensity) input as well. Its CRT was unique, in that it had electrostatic deflection, but over a wide angle much like that of magnetic-deflection CRT's. As a consequence, the CRT was not much longer from screen to connector pins ("base") than a magnetic-deflection CRT. It had no deflection plates in the conventional sense, instead what H-P called an electrostatic deflection yoke. This had electrodes inside a glass cylinder, perhaps the neck itself, or else a separate piece. The electrodes were deposited metal in an unusual pattern, like stripes -- rings -- going around the inside of the cylinder. Stripe width varied smoothly with location around the cylinder, offering maximum area top and bottom for vertical deflection, and similarly at the sides for horizontal. There were a few stripes, alternating along the neck's axis between holizontal and voertical deflections.

The deflection amplifiers had quite-good frequency response for small signals, permitting small fine detail to be displayed, but large beam swings turned on boost transistors to provide the larger currents needed temporarily to charge and discharge the yoke and its wiring. The display was described in some detail in the Hewlett-Packard Journal; unfortunately, even the year has been forgotten.

This type of CRT display, called X-Y, is uncommon, and requires external sources of signal to create a trace or image. To prevent burning a spot in the center of the screen, the CRT beam is blanked (shut off) if there are no X and Y deflection signals appplied. The H-P device could serve as an oscilloscope display. There were also short-tube magnetic-deflection X-Y displays, but the frequency response of their deflection systems was essentially only within the audio range.

Some issues must be resolved when using electrostatic deflection. Simple deflection plates appear as a fairly large capacitive load to the deflection amplifiers, requiring large current flows to charge and discharge this capacitance rapidly. Another, more subtle, problem is that when the electrostatic charge changes rapidly, electrons which are already part of the way through the deflection plate region will only be partially deflected. This results in the trace on the screen lagging behind a rapid change in signal, and reduced sensitivity to high-frequency signals. (In fact, at a given accelerating voltage and specific deflection-plate dimensions, there can be no deflection at all for a specific frequency.)

Extremely high-performance analog oscilloscopes avoid these problems by subdividing the vertical (and sometimes horizontal) deflection plates into a series of plates along the length of the "deflection" region of the CRT, and electrically joined by a delay line terminated in its characteristic impedance; the timing of the delay line is set to match the velocity of the electrons through the deflection region. Such a structure is called distributed deflection. In this way, a change of charge "flows along" the deflection plates along with the electrons that it should affect, almost negating its effect on those electrons which are already partially through the region.

Consequently, for a very-fast change in the observed signal, the beam as seen on the screen slews almost instantly from the old point to the new point. In addition, because the entire deflection system operates as an matched-impedance load, the problem of driving a large capacitive load is mitigated. A related scheme using L-C delay lines was used in wideband vacuum-tube deflection amplifiers; several tubes were connected to delay lines for both inputs (control grids) and outputs (plates/anodes). Tube and other stray capacitance thereby became part of the delay-line capacitance, while each tube's gain added ot the total output.

It is very common for oscilloscopes to have amplifiers with two or more input channels. The vertical amplifier rapidly chops or swaps the beam between/among the input channels, blanking the display while switching. This allows the single beam to show as two or more traces, each representing a different input signal. These are properly called multiple-trace (dual trace, quadruple trace, etc.) oscilloscopes. Depending upon the sweep speed, changing channels happens when a new sweep begins (for faster sweeps), or while a sweep is in progress (slower sweeps). In the latter case, the channel-switching rate is free-running, not synchronized with anything. Nearly always the blanked gaps in one sweep are covered by subsequent sweeps, resulting in apparently-unbroken traces.

Much rarer is the true dual beam oscilloscope, whose tube contains an electron gun that produces two independent electron beams, or has two completely-independent electron guns. In the former case, a splitter plate placed in the beam provides two beams. Usually, but not always, both beams are deflected horizontally by a single shared pair of plates, while each beam has its own vertical deflection plates. This allows a time-domain display to show two signals simultaneously. True dual-gun CRTs are harder to make, because the displays from the guns must be aligned acceptably, and CRT mechanical design normally assumes that the electronics that feed the CRT will make needed geometric corrections. Indpenedent rotation of one gun's display relative to that of the other is not practical, electronically. Although rare, multi-gun CRTs have been made in past decades.

Many modern oscilloscope tubes pass the electron beam through an expansion mesh. This mesh acts like a lens for electrons and has the effect of roughly doubling the deflection of the electron beam, allowing the use of a larger faceplate for the same length of tube envelope. The expansion mesh also tends to increase the "spot size" on the screen, but this trade off is usually acceptable.

Although the beam from the electron gun comprises electrons that are fast enough to be useful, most modern CRTs (especially TV and monitor CRTs) apply more high voltage to accelerate the electrons further before the strike the phosphor; this is called post-deflection acceleration (PDA) in electrostatic-deflection CRTs.

--Wtshymanski (talk) 19:09, 14 January 2009 (UTC)[reply]

Please do feel free to pester me to merge this! I need to be "pushed". (Looked at your Wiki page, btw.) Regards, Nikevich (talk) 00:29, 1 February 2009 (UTC)[reply]

(MANY hours later -- I did an all-nighter! I got carried away (more, as a new topic below). Thanks much for keeping this! I still must come back to gather some of these paragraphs and merge them into the 'scope article. However, I simply wrote up some of the topics anew. Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

Focus coils in 'scopes? No way![edit]

Referring to the first illustration, I feel safe in saying that no oscilloscope, other than (conceivably!) unique, rare, one-of-a-kind or limited-production, special-purpose 'scopes, ever used magnetic focus. I really hope that a better illustration can be found, because this is a serious, misleading technical error.

(Following paragraph added...) I've been sorely tempted to disable displaying that illustration (that is, leave the URI in the text, but mung it and tell how to fix it.)Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

(General comment:) While discussing illustrations of CRTs, I've come across a number of them that try to represent a CRT, but (apparently more so in computer-related articles and texts) betray almost total ignorance of reality. Bulb shape and proportions, as well as deflection yokes, are often not in the least representative.

(I apologize for sounding negative!) Nikevich (talk) 00:52, 1 February 2009 (UTC)[reply]

I agree with these comments. Magnetic focus is used in video display tubes (such as used in televisions or computer displays.) Oscilloscope CRTs inevitably used electrostatic focus. —Preceding unsigned comment added by 99.253.254.243 (talk) 17:55, 18 May 2009 (UTC)[reply]

Where did such text as that for Focus (early in the article) come from?[edit]

It's now part of editing history; I replaced it, totally. It looked like a low-quality, unedited machine translation from a language with a vocabulary very different from that of an Indo-European language. (There wre two or three more. Curious that nobody wanted to edit or change those items.) Nikevich (talk) 17:26, 1 February 2009 (UTC) Sorry; griping, again. Hope to have more-positive remarks, soon! Nikevich (talk) 02:29, 1 February 2009 (UTC)[reply]

It came from this edit by an IP which resolves to Madrid. If you think the Focus section was bad, take a look at what the Graticule section looked like before I copyedited it. SpinningSpark 03:09, 1 February 2009 (UTC)[reply]

Golly. Spinning spark? I like that! does it refer to rotary spark gaps in the days of wireless telegraphy? (I'm not that old!) I surely have no dislike for Spain, but apparently some well-intentioned soul used a poor-quality machine translator. In one of them, the CRT was called a "pipe". Seemed bizarre, until (as I just now realized) that a pipe is a variety of tube, right? Have brain fade after doing an all-nighter, so I was slow to see the URL. Simply adorable!: "If the control is extinguished the cricket it will not be visible." Translated, "If the graticule light is turned off, the grid lines will not show." "Cricket" is "grillo" in Italian, and the Spanish is probably similar.

Look on my userpage, you should be able to spot what the "spinning" referes to. SpinningSpark 18:10, 1 February 2009 (UTC)[reply]

Major rewrite[edit]

o Yrs trly has been a 'scope nut, occasionally passionate, for decades, which is his excuse for doing an all-nighter, a major rewrite (although the basic structure was kept). Some parts came through unchanged (especially where I was learning as I read; didn't dare touch those; they were new stuff.) The bizarre machine translations are gone (sorry!). o Added a real bunch of stuff, and the article is, most likely, much too long. o Added: Lots of descriptions of front-panel controls. In maybe three instances, started to explain innards while describing controls, so I moved the descriptions down where they fit better. Now includes variable holdoff and beam finder, for instance.

o Also added explanation of delayed sweep, as well as front-panel controls for it. o Ditto, dual and multi-trace. o Also added text about analog delay in the vertical amplifiers of better 'scopes (also a note above, on this page). Explained what it's for, and how the delay cable is made, and an historic note about the delay lines in Tek. tube 'scopes such as the classic 545A (B?). o I tried to respect the downright peculiar point of view of some author who tried to "force-fit" triggered sweep into the old recurrent sweep way of thinking. 'Fraid my editing ultimately didn't have much mercy, though. It was just too contrived. o Didn't delete much.

There's one downright goofy-stupid-yucky (but not obscene) typo somewhere; sorry. I ran out of steam before a final read-through, and got distracted; lost track of it. There are a few others, I'm sure. If they look truly weird, I use the Dvorak letter layout; love it! (In Dvorak, a few typos that are really easy to make can be baaad.) I'm sorry to leave a few, but there must be somebody who loves to fix such things; I know I do.

I surely don't want to hurt any feelings, but that black computer-graphic 'scope, top left, bothers me. It just doesn't "have it". I have little doubt that it's somebody's Labor of Love, too...

Thanks to Atlant for the big 465 pic! I snagged me a copy.

The job is incomplete; it has some redundant text, and could be better organized. The ToC as it now stands is not thrilling. I also need to merge some of that big bunch of text upstairs (above) into the article.

Some of the historic stuff came from Rider's Scope Encyclopedia (1950); it's hidden in the page source, under Refs. Thoroughly amazing book. (Betcha don't know that the spot at the screen is an image of the crossover just ahead of the cathode. :) )

Not sure whether or not I was doing Bad Things; I embedded quite a few comments, using the < followed by a ! and -- to start them. Are editors permitted to do that? ( )

If somebody hates my leading apostrophe ( 'scope ), feel free to do group search-and-replace. Will probably be all happy in 200 milliseconds.

Btw, is Atlant still here? Sorry I didn't notice he's a Tek. guy until about an hour ago. (I'm definitely a Tek fan; that's only common sense, after all! Agilent isn't bad, but it isn't Tek.) Regards, Nikevich (talk) 17:26, 1 February 2009 (UTC)[reply]

Personally, I am not a big fan of using hidden comments to raise questions of reliability etc. It will only ever be seen if someone else decides its dubious and goes in to edit it, at which point it is superfluous. Much better to use a tag template such as {{fact}}, {{who}}, {{dubious}} etc. which will attract the attention of other editors. SpinningSpark 18:19, 1 February 2009 (UTC)[reply]

USB scope examples[edit]

some usb scopes are: PicoScope 200, Velleman PCSGU250 —Preceding unsigned comment added by 81.243.181.71 (talk) 11:32, 31 May 2009 (UTC)[reply]

PC-based oscilloscopes (PCO)[edit]

Is "PCO" in common use? I've never seen it anywhere, but that doesn't necessarily mean a lot.

I see DSO used for A/D+computer processing setups indiscriminatingly. 02:30, 7 September 2009 User:Electron9
I have removed the above hidden comments from the article as it is developing into a discussion and the article is not the right place. I have not researched who made the original post and left it unsigned. For what it's worth, I have seen PCOs around for many years, but mostly at the low (amateur) end of the market. SpinningSpark 15:39, 7 September 2009 (UTC)[reply]

Should it be called a 'scope in formal writing?[edit]

Maybe it's just me, but seeing about a hundred instances of the abbreviation 'scope, instead of oscilloscope, strikes me as too informal for encyclopedic writing. Also, all of those apostrophes look very ugly and distracting. I wanted to see if there was any consensus for spelling this word out consistently in the article, or if I was the only one who felt that way. CosineKitty (talk) 18:35, 19 March 2010 (UTC)[reply]

I think I agree with that. In general, I don't have a problem with shortening long technical words to something more familiar, but there are just too many different uses of the contraction "scope". On the other hand scope probe is ok in my opinion - although even that is a redirect to test probe. Oscilloscope probe is simply not a phrase that has any currency. SpinningSpark 16:25, 3 April 2010 (UTC)[reply]

Washing???[edit]

I can't find any references to support the assertion that the insides of oscilloscopes were regularly washed, and it seems to me to be dubious at the very least. Unless a reference can be provided to show that this was real, I suggest this section be removed. -- 80.168.173.239 (talk) 14:38, 23 April 2010 (UTC)[reply]

Well this distinctly unreliable source says he washes his in the bathtub. SpinningSpark 16:37, 23 April 2010 (UTC)[reply]
And here is a reliable and authoritative source. See p.6-4. SpinningSpark 16:50, 23 April 2010 (UTC)[reply]
It's not really central to a discussion of oscilloscopes, though. The article is quite long enough without going into repair and service information. --Wtshymanski (talk) 16:58, 23 April 2010 (UTC)[reply]
Ok, I just restored it on the grounds that it really is verifiable, but if the consensus is that it is out of scope I have no objection to it being deleted again. SpinningSpark 17:02, 23 April 2010 (UTC)[reply]
You don't think that perhaps this was a waste of effort when the article only has a couple of references, most of them to funky old illustrations that have nothing to do with the first 3/4 of the text? Dig up something on PC oscilloscopes, or how sweep works, or *anything* - the article needs that much more than a side-trip down a dead-end. --Wtshymanski (talk) 18:11, 23 April 2010 (UTC)[reply]
Actually, I think that oscilloscope washing is interesting because it is so surprising. The very reason it was tagged in the first place and the very reason I took the trouble to look into it. It is quite exceptional for electronic equipment and not run-of-the-mill service information. SpinningSpark 07:48, 24 April 2010 (UTC)[reply]
*All* printed circuit boards get washed - and service shops routinely use all manners of air-hoses and solvents on dirty equipment. cetainly this is the most important section of the article, maybe even it needs to be in the lead - but i wouldn't dare give any directions to fellow editors now, would i? --Wtshymanski (talk) 13:51, 24 April 2010 (UTC)[reply]

Ah. Service and maintenance shops I understand. End-users washing their oscilloscopes in day-to-day usage, no; that seems to me more like a recipe for electrocution. -- 80.168.173.239 (talk) 15:17, 24 April 2010 (UTC)[reply]

Article split[edit]

Regarding my recent article splitting, I noted Wtshymanski's comments about washing not being too important in this "overly long" article. I would politely direct attention to WP:NOTPAPER.

There is no issue with expanding voluminously on this or any topic in whatever level of meticulous detail is desired. We simply split off the sections into new articles, or develop entire articles from a single paragraph.

DMahalko (talk) 02:15, 5 June 2010 (UTC)[reply]

"Not paper" is not and never has been the problem. The real bottleneck to an encyclopedia article is the reader's time and attention. Any given article must stick pretty closely to its topic. Free-association of any idea that conceivably bears on the subject is not a good way to use the reader's time. Otherwise you eventually wind up with an encyclopedia with only one giant article in it called The sum total of human knowledge to date. --Wtshymanski (talk) 05:48, 5 June 2010 (UTC)[reply]
DMahalko, I agree that now the article is split, the information on washing could go back in. It belongs in the history article, as it is a historical practice. Despite Wtshymanski's comment above, it is highly unusual to wash electronic equipment in this way as a maintenance procedure, and it is especially unusual to use water as a solvent on high-voltage circuitry. SpinningSpark 08:32, 5 June 2010 (UTC)[reply]

Buttons and knobs[edit]

Do you think we might just leave the descriptions of the buttons and knobs to the owners' manuals, and instead talk more about how and why and what a 'scope does? It's also shocking that we have no references at all for 90% of the content (was entirely unreferenced except for my footnote on the bandwidth/risetime formula from years ago). --Wtshymanski (talk) 14:11, 27 September 2010 (UTC)[reply]

I agree. See WP:NOTHOWTO.

Describing to the reader how other people or things use or do something is encyclopedic; instructing the reader in the imperative mood about how to use or do something is not.[4] If you are interested in a "how-to" type of manual, you may want to look at wikiHow, How to Wiki or our sister project, Wikibooks.

Jeh (talk) 04:06, 2 August 2013 (UTC)[reply]

Washing again[edit]

{{rfctag|sci}}

Does the material on oscilloscope washing belong in this article? SpinningSpark 11:00, 9 April 2011 (UTC)[reply]

Oscilloscope washing has been discussed a number of times above. The text has currently been deleted but can be seen in this diff. Initially, it was deleted as dubious and unreferenced. Subsequently it has been shown to be referencable see page 6-4[4]. However, restoration has been steadily opposed by one editor so I am opening this RfC to see if there is consensus to restore. SpinningSpark 11:00, 9 April 2011 (UTC)[reply]

I would say it doesn't belong. Whether or not someone's written about it it's trivia, and has no more place here than a section on car washing at Car or on dog washing at car. Everything gets washed and cleaned, and it's often a specialist service or procedure. It doesn't seem like the process for oscilloscopes is especially notable, compared to other electronic equipment.--JohnBlackburnewordsdeeds 11:53, 9 April 2011 (UTC)[reply]
I don't think those are quite valid comparisons. While no one would express surprise at soap and water being used to wash a car or a dog, it is highly unusual for high-voltage electrical equipment and most electrical engineers would likely express surprise (the very fact that most initially thought this was dubious bears that out). SpinningSpark 12:41, 9 April 2011 (UTC)[reply]
My reason for mentioning car and dog washing is they are far more notable as they are actual industries or professions, and have their own articles, but are not given sections in their main articles. But if you prefer note the lack of information on TV cleaning at Television or phone washing at Mobile phone. An oscilloscope is only high voltage when switched on; when off, so when being cleaned, it's just a piece of electronic equipment.--JohnBlackburnewordsdeeds 13:35, 9 April 2011 (UTC)[reply]
Not entirely. Much greater care and thorougness is required in the drying with HV or else tracking could become a problem. The sources are quite clear on this point. Again showing the surprising nature of this procedure. SpinningSpark 19:29, 9 April 2011 (UTC)[reply]
Support inclusion. Although I don't think the text is great, including it is reasonable if only because the practice is unusual. Tektronix had a booth where they would take off the knobs and wash a scope before calibrating it. If nothing else, it would make the scope look better. Glrx (talk) 18:17, 9 April 2011 (UTC)[reply]
The book Oscilloscopes: selecting and restoring a classic by Stan Griffiths devotes 10 pages (17 through 26), to the topic of washing an oscilloscope. It's quite detailed. I don't have much of an opinion one way or the other on inclusion in the article; I'm just providing this as a reference for those who would like to have it included. For those who do not have a copy of the book, I can provide text or review, if needed. Wildbear (talk) 19:46, 9 April 2011 (UTC)[reply]
  • Support inclusion I have not checked the sources but I assume they are sufficient as I am aware that washing was sometimes required. True, the wording is weak but it is ok for an encyclopedic article to occasionally include "general interest" items (while I favor removal of "in popular media" sections from many otherwise serious articles, such sections show the community tolerates zany information). Washing is an astonishing proposition, but it is part of history. Johnuniq (talk) 04:31, 10 April 2011 (UTC)[reply]
  • Remove In its current form, the section is misleading. Dish detergent is not mentioned in the reference proved by User:Spinningspark. Water is mentioned, but it must be described as being applied with a cloth material. With some slight modifications, I think the section belongs under maintenance of the device. Niluop (talk) 04:03, 17 April 2011 (UTC)[reply]
  • Exclude: Wikipedia is not a how-to guide, and certainly not an archive of historical how-to information! –CWenger (^@) 02:08, 25 April 2011 (UTC)[reply]
  • Remove It was a real task, but no more specific to oscilloscopes than to any other valve HT kit of that era. It lasted a little longer for scopes, because of the CRT. At most we can probably justify a section on the use of valves, then transistors, then simple linear ICs, then processors. The issues of HT maintenance would sit sensibly within that, but not as a stand-alone like this, or as long. It certainly doesn't need to go into WP:HOWTO territory. Andy Dingley (talk) 13:17, 3 May 2011 (UTC)[reply]
  • I was intending to redraft the text into an acceptable non-howto, well-referenced form, but I don't want to do it in the teeth of opposition. I would probably be wasting effort, so withdrawing RfA at this time. SpinningSpark 17:50, 3 May 2011 (UTC)[reply]
Small aside. Someone gave me a dual beam (yes! not just dual trace) 'scope a few weeks ago, a Telequipment 43. I've just stripped and washed it. Quite mucky it was too! Andy Dingley (talk) 14:00, 9 October 2011 (UTC)[reply]

Smallest Oscilloscope![edit]

I think this is relevant to the topic as Oscilloscope are commonly perceived as bulky and uncool. Well, check this article out that transform an iPad/iPhone into an Oscilloscope

http://www.engadget.com/2011/04/07/osciums-imso-104-turns-ipad-iphone-into-mixed-signal-oscillosc/ —Preceding unsigned comment added by 210.4.96.73 (talk) 21:08, 12 April 2011 (UTC)[reply]

That's huge! If an iPad is twice the size of an iPhone, the smallest mass-market scope I know of is only half that size again (look on eBay for "nano"). It's MP3 / MP4 player hardware, reprogrammed. A very handy gadget, and they're supposed to be releasing a dual trace Real Soon Now. Andy Dingley (talk) 13:14, 3 May 2011 (UTC)[reply]

The smallest usable oscilloscope is probably the Xprotolab: it measures only 1 x 1.6 inches. http://www.gabotronics.com/development-boards/xmega-xprotolab.htm Mstempin (talk) 07:41, 13 June 2011 (UTC)[reply]

Oscilloscope#Merger proposal[edit]

A merge has been proposed of an article that may either enhance or duplicate existing content. Please review the page at DIGITAL STORAGE OSCILLOSCOPE that is suggested for merging here, and discuss below. --Kudpung กุดผึ้ง (talk) 12:51, 9 October 2011 (UTC)[reply]

Indeed. IMO this is a wholly uncontroversial move. The new DSO page should just be a redirect here. The section here on DSOs does need to be expanded, but that's a different task. Jeh (talk) 13:16, 9 October 2011 (UTC)[reply]
  • Oppose I'm against merging anything from DIGITAL STORAGE OSCILLOSCOPE or for turning it into a redirect. We can't merge, because there's nothing there to merge. Can you actually read any of those "sentences"? We shouldn't redirect because the name is just so far against MOS as to not be a plausible redirect.
We need an article at Digital storage oscilloscope, and this is appropriate for a stand-alone article, not a merge to Oscilloscope. We would use a redirect too at Digital Storage Oscilloscope, as DSO is a pretty common term. The mess at DIGITAL STORAGE OSCILLOSCOPE forms no useful part of this. Andy Dingley (talk) 13:55, 9 October 2011 (UTC)[reply]
  • I have made a start on creating the article suggested by Andy. As this is the most common type of oscilloscope now, it perhaps should be separate rather than being buried deep in the general article. Warden (talk) 15:50, 9 October 2011 (UTC)[reply]
    • Andy: I wasn't thinking about actually using the content there, but expanding the section here - call it "rewrite and then merge". As for merge vs. new article, I was thinking the section here could be expanded until it obviously needs an article of its own, instead of starting off as a stub.
    • But a new article from the beginning is fine with me too. Now, can I ask why you slapped a CFD on Colonel Warden's start on the article you said we needed? Right after he started work on it? Jeh (talk) 16:47, 9 October 2011 (UTC)[reply]
I think the very little on digital 'scope in this article could usefully be replaced with a smmary of what is at Digital storage oscilloscope. --Wtshymanski (talk) 17:05, 1 December 2011 (UTC)[reply]

Why are we forbidden to say that Osc response is not flat?[edit]

My edit, which explained how BW limitation appears from the device BW, was recently removed. Without understanding this, one may measure 1v signal in the bandwidth and wonder why it is only .707v and blame the “bad” signal source. The article editors say that there is a good reason to keep the fact of frequency response attenuation away from the article. They provided the reason in my talk page. Basically, they say that the frequency response is flat because the HW prices are high and any EE can understand this immediately. Besides violation of Wikipedia:MTAA in such argument, I see a violation of common sense. IMO, the whole idea to have a BW is because frequency response is not flat it general. You limit it to lower frequencies where distortions are less than 0.707. If response would be flat, there would be no need to limit anything. It is important to understand that measured voltage is not the same as in reality. Now, I’ve got a book, which says the same: "one would think that the oscilloscopes vertical amplifier should have a flat frequency response but this is not the case because such amplifiers have nonconstant group delay". I believe that it is a pretty reliable source. It says precisely that non-flat response is a common sense of confusion for many noobs and it says that response is actually not flat. Do you see that? It says explicitly that flat frequency response is a wrong first impression and nonconstant means non-flat. The handbook even draws a plot (that could also be useful here), the attenuating frequency response, to illustrate the point. In the later edits, my opponents have tried to address non-EE audience (why the EE handbook needs to clarify things, known to every EE whereas WP may omit this explanation on the ground that it is clear for all EEs? Who has the Wikipedia:MTAA commitment, the IEEE handbook or WP?). But, our authors go on insisting that osc. response is flat. Do all WP editors have such bandlimited mind? How can they say about .707 drop in the plot of a flat function? --Javalenok (talk) 14:27, 26 December 2012 (UTC)[reply]

The article never uses the word "flat" or makes claims that could be construed that way, so I for one am mystified as to what you're complaining about. Jeh (talk) 22:00, 26 December 2012 (UTC)[reply]
Better now? Jeh (talk) 00:16, 27 December 2012 (UTC)[reply]

Yes, we do not have anything flat in the article. You are mystified because you forgot that you defend the rollback which says that "non-flat response" is incorrect and your claims that it is flat indeed. Now, how missing the word "flat" in the article rebuts my complaints about this? The article is much better now, thanks. I would still add how 5V reads as ~3.5V in the discarded example. --Javalenok (talk) 16:39, 27 December 2012 (UTC)[reply]

I never claimed it was flat either. I said quite clearly and often that no engineer worth their salt expects ANY such instrument to have a "flat" response within the passband, so how you think I ever claimed "flat" response is, yes, mystifying. I defended the revert because your writing was, frankly, not up to WP "encyclopedic" standards. Jeh (talk) 18:08, 27 December 2012 (UTC)[reply]

Wresting again? It is very easy to check. Look again what you call "the very good reason", [5] and how you started to defend it. Please note that the reversion reason starts with the words "response is flat, but limited" (assuming that we cannot dare to speak about high-freq attenuation) and all you defense from the beginning was that it is right, that response is flat indeed. Now, after the flames of talk, you finally came up with the encyclopedic standards as the problem and the only problem. Why are all the flames before? Thank you for finally confirming that reversion was made under the false complaint indeed. You've chosen very indirect way of saying that. --Javalenok (talk) 12:09, 30 December 2012 (UTC)[reply]

As you did on your talk page, you're making this about me, not about the article. Believe what you want. I'm done here. Jeh (talk) 17:43, 30 December 2012 (UTC)[reply]
Telling that your claims in discussion pages are personal and, therefore, should not be discussed is utterly manipulative. --Javalenok (talk) 18:00, 2 February 2013 (UTC)[reply]
I'm not talking about my claims. I'm talking about your inexplicable desire here to rehash the sequence of the discussion (and, now, to revisit it after a month!) with attention to my behavior, even though we have reached agreement on article content.
It is not me being "manipulative" by saying that this is not a proper topic of discussion on WP. Note WP:FOC: "Focus on article content, not on editor conduct." I think we resolved the content dispute. If you don't think so, then sure, let's discuss further revs to the content. Otherwise, as I said, I'm done here.
As for "flames", flaming is not an accusation to be bandied about lightly. (If you think I was flaming you, you obviously were never in an argument on Usenet.) Flaming is not simply disagreement, or even protracted disagreement; flaming is grossly uncivil behavior (usually involving invective, personal insults, etc.). You might review WP:Civility#Identifying_incivility; I do not think you will find that any of those points are applicable. Jeh (talk) 11:46, 3 February 2013 (UTC)[reply]

USB scopes[edit]

I'm being WP:BOLD and replacing the 3rd picture to show a modern USB scope. I'm using an image I specifically got permission from the manufacturer to use. If anyone has issues, discuss here. Wonderfl (reply) 11:23, 13 June 2015 (UTC)[reply]

Merging/sorting[edit]

Too much duplication of content regarding oscilloscopes.

To sort this out can I:

Neat and tidy. Any comments or ideas?

Wonderfl (reply) 09:05, 14 June 2015 (UTC)[reply]

"constantly varying"[edit]

2nd para "constantly varying" seems to be an oxymoron, and whereas some here likely will explain what ought to be understood by this, this does need some explication esp to those who need consult an encyclopaedia to find out what an oscilloscope is. Anyone? Paul Beardsell (talk) 12:07, 25 November 2017 (UTC)[reply]

Not an oxymoron. It simply means that the signal never stops changing - as is the case with any repetitive waveform. However a signal examined with a scope does not have to exhibit such a property. For example, it might change for a while and then stop changing, at least to an easily-observable degree. Examples would be a capacitor being charged through a resistance, or a decaying oscillation or "ringing".
So I simply deleted the word "constantly". Jeh (talk) 12:27, 25 November 2017 (UTC)[reply]

A Commons file used on this page has been nominated for deletion[edit]

The following Wikimedia Commons file used on this page has been nominated for deletion:

Participate in the deletion discussion at the nomination page. —Community Tech bot (talk) 04:37, 16 October 2018 (UTC)[reply]

The deletion request has been closed as spurious. Jeh (talk) 09:24, 16 October 2018 (UTC)[reply]

yoke[edit]

Dear Jeh, you removed the last change I provided in the article oscilloscope and so went back to the CRT with yoke deflection coils. I strongly believe, this picture is simply wrong and misleading. Having worked about 3 years in that industry, I maintain that with oscilloscope CRTs, ONLY electrostatic deflection are used (of course, no more the case with the current LED panels), rather than the magnetic deflection commonly and only used with television and other large CRTs. The sources and external reference will confirm my current assumption. So shouldn't you agree with my proposal, at least remove the yoke deviation coil presented--Wikiraptor2 (talk) 17:00, 11 January 2019 (UTC) — Preceding unsigned comment added by Wikiraptor2 (talkcontribs)

That's not a deflection coil. Andy Dingley (talk) 17:13, 11 January 2019 (UTC)[reply]
My edit cmt was mistaken, "Wikiraptor", but not in a way that supports your edit. The deflection plates are on the original picture, and are described in the caption (as "electrodes"); they're just hard to spot. See Figure 1 - er, see Callout 1. Jeh (talk) 17:36, 11 January 2019 (UTC)[reply]
And I have now edited the caption to use the more common (IME - that's 40 years' experience using oscilloscopes) term "deflection plates". I trust this addresses your concerns, WR. Jeh (talk) 17:55, 11 January 2019 (UTC)[reply]
Excellent work ! thank you and sorry for my nit-picking request. Regards--Wikiraptor2 (talk) 11:01, 13 January 2019 (UTC)[reply]

A Commons file used on this page has been nominated for deletion[edit]

The following Wikimedia Commons file used on this page has been nominated for deletion:

Participate in the deletion discussion at the nomination page. —Community Tech bot (talk) 15:31, 19 March 2019 (UTC)[reply]

India Education Program course assignment[edit]

This article was the subject of an educational assignment supported by Wikipedia Ambassadors through the India Education Program.

The above message was substituted from {{IEP assignment}} by PrimeBOT (talk) on 19:57, 1 February 2023 (UTC)[reply]