Diethylhydroxylamine

From Wikipedia, the free encyclopedia
Diethylhydroxylamine
Skeletal formula of diethylhydroxylamine
Ball-and-stick model of the diethylhydroxylamine molecule
Names
Preferred IUPAC name
N-Ethyl-N-hydroxyethanamine
Identifiers
3D model (JSmol)
1731349
ChemSpider
ECHA InfoCard 100.020.960 Edit this at Wikidata
EC Number
  • 223-055-4
MeSH N,N-diethylhydroxylamine
RTECS number
  • NC3500000
UNII
UN number 1993
  • InChI=1S/C4H11NO/c1-3-5(6)4-2/h6H,3-4H2,1-2H3 checkY
    Key: FVCOIAYSJZGECG-UHFFFAOYSA-N checkY
  • CCN(O)CC
Properties
C4H11NO
Molar mass 89.138 g·mol−1
Appearance Colorless liquid
Odor Ammoniacal
Density 867 mg mL−1
Melting point −26 to −25 °C (−15 to −13 °F; 247 to 248 K)
Boiling point 127.6 °C; 261.6 °F; 400.7 K
Miscible
Vapor pressure 500 Pa (at 0 °C)
Acidity (pKa) 5.67 (est) [1]
Thermochemistry
370.8 J K−1 mol−1
−175.47–−174.03 kJ mol−1
−2.97201–−2.97069 MJ mol−1
Hazards
GHS labelling:
GHS02: Flammable GHS07: Exclamation mark
Warning
H226, H312, H315, H319, H332
P280, P305+P351+P338
Explosive limits 1.9–10%
Lethal dose or concentration (LD, LC):
  • 1.3 g kg−1 (dermal, rabbit)
  • 2.19 g kg−1 (oral, rat)
Related compounds
Related alkanols
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Diethylhydroxylamine (DEHA) is an organic compound with the formula (C2H5)2NOH. Strictly, this is N,N-diethylhydroxylamine. It has an isomer, N,O-diethylhydroxylamine with the formula EtNHOEt. N,N-diethylhydroxylamine is a colorless liquid, although it is usually encountered as a solution. It is mainly used as an oxygen scavenger in water treatment.

It is a volatile oxygen scavenger[2][3] and reacts in a ratio of 2.8/1 DEHA/O2. It is employed in high pressure (>70 bar) boiler systems due to a very low rate of reaction at low temperatures and pressures. Due to its volatility, it acts as an oxygen scavenger throughout the entire boiler system due to steam carryover. DEHA also reacts with ferrous metals to form a passivized film of magnetite throughout the boiler system.

It has these other uses:

  1. Polymerisation inhibitor
  2. Color stabilizer (photographics)
  3. Corrosion inhibitor
  4. Discoloration inhibitor (phenolics)
  5. Antiozonant
  6. Radical scavenger[4]

References[edit]

  1. ^ Hilal SH et al; pp. 291-353 in Quantitative Treatments of Solute/Solvent Interactions: Theoretical and Computational Chemistry Vol. 1 NY, NY: Elsevier (1994). SPARC (Software Process Automation Reaction Chemistry) Available from, as of Dec 7, 2007: http://ibmlc2.chem.uga.edu/sparc/
  2. ^ Cáceres, T.; Lissi, E. A.; Sanhueza, E. (November 1978). "Autooxidation of diethyl hydroxylamine". International Journal of Chemical Kinetics. 10 (11): 1167–1182. doi:10.1002/kin.550101107.
  3. ^ Shaffer, Dean; Heicklen, Julian (August 1986). "Oxidation of diethylhydroxylamine in water solution at 25-80.degree". The Journal of Physical Chemistry. 90 (18): 4408–4413. doi:10.1021/j100409a039.
  4. ^ Abuin, E.; Encina, M. V.; Diaz, S.; Lissi, E. A. (July 1978). "On the reactivity of diethyl hydroxyl amine toward free radicals". International Journal of Chemical Kinetics. 10 (7): 677–686. doi:10.1002/kin.550100704.